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SUMMARY

A generalized subsonic unsteady aerodynamic kernel function, valid for both
growing and decaying oscillatory motions, is developed and applied in a modified
flutter analysis computer program to solve for boundaries of constant damping ratio
as well as the flutter boundary. Results are given for the variation of generalized
aerodynamic forces with the damping ratio. Some comparisons are made with an alter-
native method of obtaining generalized forces based on rational function approxima-
tions of simple harmonic forces. For decaying motion, instances were observed of
unexpected looping and spiraling of generalized aerodynamic forces calculated in the
complex plane at high reduced frequencies. Similar spiraling behavior was found for
two~dimensional flow for which convergence of the results with respect to downwash
collocation was proven. Rates of change of damping ratios with respect to dynamic
pressure near flutter are substantially lower from the generalized-~kernel-function
calculations than from the conventional velocity-damping (V-g) calculation. For the
DAST ARW-11, calculated values of both damping ratios and frequencies agreed with the
in-flight experimental values for Mach numbers approaching the flutter condition.

The aerodynamic forces from the rational function approximation used in control
theory for s-plane analysis agreed fairly well with kernel-function results except
for strongly damped motion at combinations of high (subsonic) Mach number and reduced
frequency.

INTRODUCTION

Considerable flutter analysis has been accomplished using the subsonic kernel
function that originated from the lifting-surface-theory work of H. G. Kussner (1940)
that is based on the linear theory of potential flow. Watkins, Runyan, and Woolston
(1955) cast the kernel function in a form amenable to automated computation. The
function was developed by assuming simple harmonic (i.e., constant-amplitude) motion
that had continued for an infinite time. Thus, in a flutter analysis the resulting
aerodynamic forces are valid only at the flutter boundary, but are not strictly valid
for growing or decaying motion at speeds above and below a flutter boundary.

Numerous analyses have attempted to forecast the near-flutter and approach-to-
flutter behavior of lifting surfaces. Such efforts began at least as early as the
velocity-damping (V-g) solutions of Smilg and Wasserman (1942) and continue today in
the rational function approximation (RFA) described by Sevart (1975) and applied, for
example, by Abel (1979).

The present report generalizes the subsonic kernel function into the s-plane for
arbitrary values of the complex reduced frequency. This kernel function is then
applied to analyze the near-flutter behavior of several configurations using the
equations of dynamic equilibrium of Cunningham (1978). The calculations were carried
out by a modified version of the flutter analysis computer programs described by
Desmarais and Bennett (1978). An appendix describes the evaluation of the kernel
function by an accurate series approximation for which the computation is economical.

1Drones for Aerodynamic and Structural Testing (DAST), aeroelastic research
wing 1 (ARW-1).



The present results are compared with both the near~flutter results from the V-g
method and the results from RFA aerodynamics in control theory.

e

SYMBOLS

speed of sound

generalized aerodynamic force, egquation (5)

coefficients of the rational function approximation (RFA), equation (6)

root semichord, often reference length

lift-curve slope

lifting pressure coefficient for unit amplitude of mode 3, Apj/(pvz/z)

cyclic frequency of motion

mechanical hysteresis structural damping coefficient of mode
root-finding increment added to 94

mode shape of mode i

imaginary unit, V:7

imaginary part of ( i

wb wi

reduced frequency, —Vg and v

complex reduced frequency, k{1 + iE)

i

K(M,k,xo,yo) generalized kernel function for real k and for k replaced by

k(1 + iZ)

E(M,k,xo,yo) kernel function with singular factor removed, equation (3)

L
my

M

N

Ap(x,y,t)

Ap,
pJ

reference length, optionally equal to bo
generalized mass for mode i

Mach number of undisturbed stream

number of modes in analysis

lifting pressure distribution

= a(AP)/B(qj/l)



qi(t)

20)

Re( )

RFA

Y4
\'4
w(x,y,t)

Xey¥Ye2

generalized coordinate of mode i

rational function approximation for any Aij' equation (6)

real part of ( )

rational function approximation

iw(1 + i£)£ coefficient of t for general exponential time-~varying

motion e5%; also the Laplace transform variable

s /v
planform area of lifting surface
time
= (=x_ + mr)/(8%]v,])
o o
speed of undisturbed flow
downwash distribution, positive with =z

orthogonal, right-handed coordinates nondimensionalized by £, x positive
downstream, y positive on the right-hand half-span, 2z positive up

=X—£

y -n

angle of attack, pitch displacement

= \1 - M2

aerodynamic lag parameters in equation (6)

logarithmic decrement of oscillatory motion, positive for decay
damping ratio of control theory, cos 6

damping ratio used herein, defined in equation (9)

dummy variable for vy

angle from negative real s-axis to s of motion (see sketch on p. 5)

mass ratio, wing mass divided by the mass of air in a truncated cylindrical
cone that just encloses the wing planform

dummy variable for x
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o] air density

w circular frequency of motion, radians/sec
wi natural frequency of mode i

wo base or reference frequency, equations (4)
wa natural frequency of torsion mode

ANALYSIS
Downwash Integral Equation and Kernel Function

The phenomenon studied here is that of a thin lifting surface oscillating normal
to the direction of a compressible flow. The linear, small disturbance equations of
potential flow along with the associated boundary conditions are used to analyze this

phenomenon.

Based on the pioneer work of Kussner (1940), the integral eguation that relates
downwash and lifting pressure difference on a planar lifting surface can be put in

the form

Wi yet) o1 [ [ Ap(E,n,t) K(M,k,x_,y ) A(ZE) d(&n) (1)
v 2 o "o
AnpV S

where K(M,k,x5,¥,) 1is the kernel function relating the downwash produced at x,y
due to unit lifting pressure at §&,n.

Watkins, Runyan, and Woolston (1955) expressed the subsonic planar (z = 0)
kernel function as

2 "o . 12 2) /.2
K(M,k,xo,yo) = lim __3___5 exp(—ikxo) f exp 1k()‘ - M\A™ + r )/B ] dxa

z»0 9(22z2) ~o0 sz + r2

(2)

where A, the streamwise variable of integration for x - £, is positive downstream.
The integral in equation (2) sums up the effects on the downwash at x,y at the
present instant of all pressure disturbances which originated at £,n over all past

time.

Carrying out the differentiation of equation (2), taking the limit, and inte-
grating by parts changes the form of the planar kernel function to




where

x
R(M,k,xo,yo) = exp(—ikxo) [(1 +-§2> exp(—iku1|yo|)

- ix|y lf 1 = —2-——) exp(-ik|y_[u) du] (3)
° Ju, ( 1+ o2 °©

The calculation of K 1is described in the appendix.

Consider now the generalization from simple harmonic (constant-amplitude) motion
with time variation exp iwt (real w) to growing and decaying oscillatory motion
with time variation exp st (complex s). Such motions have come to be termed
"s~plane motions," where in the complex s-plane, s = iw 1is the positive imaginary
axis. As indicated in the accompanying sketch, for growing motion the real part of
s 1is positive and for decaying motion the real part of s is negative.

Im(s)
Decaying
motion
s = iw(l + i) g——=—— ¢iw
|
1
: Growing
| motion
| lsl
|
1
I
1
|
G
1
~0Z Re(s)

The generalization to growing and decaying motion from harmonic motion is accom-
plished by replacing the frequency ®w by w(1 + iZ), where 7 1is a motion damping
ratio that is positive for decay. The parameter [ = §/2%, where § 1is the
logarithmic decrement of motion, as described, for example, in Cunningham (1978).
The sketch shows that this definition of the damping ratio is equivalent to

z = -Rel(s)/Im(s) = cot O, in contrast to the damping ratio used in control theory,
g = —Re(s)/lsl = cos 0 = Z/d1 + EZ. The selection of the cotangent function to

define the damping ratio simplifies the modifications required in the flutter analy-
sis computer program described below. For small damping ratios the two definitions
are asymptotic. For instance, with 0 = 70°, they differ by only 6 percent.

The integral in equation (3) exists for growing and for constant-amplitude
motion, but for decaying motion the integral is improper. This problem is surmounted

[ |||||M ‘II TR s e T N R T



as follows. For both growing and constant-amplitude motion, the integrals defining
the kernel function are computable. These integrals are recognized as representa-
tions of analytic functions, namely, Bessel and Struve functions. These analytic
functions can then be used to evaluate the quantity represented by the integrals for
decaying motion even though the integrals are nonconvergent. This use of analytic
continuation is described, for example, by Carrier, Krook, and Pearson (1966) and
cited by Edwards (1977). The evaluation of the improper integral for decaying motion
is described in the appendix.

For the present report the FAST (Flutter Analysis System) computer program of
Desmarais and Bennett (1978) was modified to incorporate the generalized kernel func-
tion. The resulting aerodynamic forces are those corresponding to the user-selected
Z. The 12-term exponential series approximation D12.1 (see appendix) of Desmarais
(1982) was used, in general. Several checks to verify accuracy were made with the
24-term series D24.2. BAs shown in the appendix, approximation D12.1 is accurate for
growing and decaying motion in the s-plane extending at least 45° on both sides of
the imaginary s-axis that represents harmonic motion.

Equations of Dynamic Equilibrium

In equation (22) of Cunningham (1978), the equations of equilibrium are given
for growing and decaying motion. An equilibrium condition exists when the complex
structural forces are balanced by the complex unsteady aerodynamic forces. Solutions
can be obtained by an application of the familiar V-g root-finding technique. 1In
this method aerodynamic forces are calculated for an assumed complex reduced fre-
quency, and an eigenvalue problem is solved to determine the roots of the equilibrium
equations. In general, none of the roots match the assumed reduced frequency and a
matched condition must be determined by iteration. This procedure was implemented by
modifying the solution procedure used for the traditional V-g root-finding technique
in the FAST computer program of Desmarais and Bennett (1978).

Equation (5) of Desmarais and Bennett (1978) expresses the equilibrium condition
at a flutter boundary, with motion neither growing nor decaving, for which solutions
are obtained in the FAST program. This equation and program can be generalized to
solve equation (22) of Cunningham (1978) for boundaries of selected 7 # 0, (as well
as for ¢ = 0). This generalization is done by replacing w and k by w(1 + iZ)
and k(1 + iZ) throughout the analysis. The resulting equations can be put in the

form

wo 2 k2(1 + 1;)2 (w /wl) p24 qj -
R HT) T rie) | T+ ig) 2 7 Py =0

i 9 i 9 j=1 J

(i =1, 2, 3, ees, N) (4)
where the generalized aerodynamic force element
- ff Ap(x,y)
A.. h, (x.y) dx dy (5)
4] pV2/2



is a function of M, Kk, E, and the planform. The eigenvalues (one for each elastic

mode }
w £ 2
Q= _g;. (1 + ig)

are sought at values of k for which the structural damping g = 0. Traditionally,
solutions with g # 0, which are obtained in the iterative process of finding a
matched flutter point, have been used as an indication of the approach to flutter.
For the present study the only changes in the equilibriug equations (4) from those of
Desmarais and Bennett (1978) are the factor of (1 + ir) in the second term and the
iij' which are now functions of Z.

A Rational Function Approximation (RFA) of Unsteady Aerodynamic Forces

Sevart (1975), Roger (1977), and Abel (1979) described a mathematical technique
used in control theory for approximating the unsteady aerodynamic forces in the
general s-plane based on the forces for simple harmonic motion. The technique is
outlined as follows:

1. Beginning with simple harmonic motion, each individual generalized-force
matrix element A,, of equations (4) is calculated for a series of values of ik
1]

(note the distinction between the modal index i (in A, .) and the imaginary unit
i =\ (in ik)). +J

2. Using temporafily here the notation of Abel (1979), namely, é(ik) to repre-
sent any individual Aij(ik), the variation of the aerodynamic forces is approximated

by a rational function (RFA) with real coefficients of the form

. ) 3 (ik)A_
Q(ik) = Ay + ikA1 + (ik) A, + T B — (6)
m=23 m-2

3. Using known values of é at a sequence of at least four values of k, a
least-square-error solution for the real coefficients Ay to Ag is calculated.
(The resulting approximations can be compared with the exact (input) values of k
and also calculated for intermediate values of k.)

4. Substitute the complex quantity s&/V for ik in equation (6) to obtain

[
A s
~ 2 E m
Q(SQ/V) = AO + (sl/V)A1 + (Sl/V) AZ + £ ;‘_'_'(—‘,727)—6—;; (7)
where
s 2 w(-z + i) = iw(1 + iZ) (8)



and the damping ratio (positive for decaying motion) is

z = %; = cot 0 (9)

In the present report all the results from the RFA were calculated using 8, -, as
0.2, 0.4, 0.6, and 0.8,

RESULTS AND DISCUSSION

Three flutter analyses were performed using the FAST program modified for grow-
ing and decaying motion as described above. The planforms analyzed, depicted in
figure 1, are as follows: (1) a clipped-tip delta wing, (2) an aspect-ratio-five
rectangular-planform model, and (3) a transport-type supercritical wing. Results
of the present analysis, using the generalized kernel function, are compared with
results of two approximate methods for calculating motion-damping ratios. One of
these is the traditional V-g calculation of Smilg and Wasserman (1942). The other
is the RFA aerodynamic-force method described in the preceding section. 1In all

cases b, was used for the reference length 2.

Clipped~Tip Delta-Wing Flutter Model

The clipped-tip delta-wing flutter model analyzed is that of the sample case
of Desmarais and Bennett (1978), and the planform and aeroelastic parameters are
given therein. The same model was analyzed at supersonic Mach numbers in
Cunningham (1978)., Figure 2 is a plot of speed index versus density for M = 0.8.
Kernel-function results are shown at constant damping ratios ¢ for harmonic
motion (Z = 0), for growing motion (E = ~-0,02), and for decaying motion
(E = 0,02 and 0.05), all with modal damping coefficients g3 = 0. For comparison
the results of the V-g method are given by the dashed curves. 1In the V-g method the
aerodynamic forces for Z = 0 are used, and the value of gy (the same for all
modes i) corresponds to damping ratio —22. The dashed curves were therefore com-
puted with the coefficients g; = ~0.04 and -0.10 to forecast decaying motion and
with gj = 0.04 to forecast growing motion.

The figure includes a possible wind-tunnel operating curve for fixed Mach num-
ber M and speed of sound ag. The intersections of the operating curve with the
various boundaries are projected down to an inset plot of ¢ and -gy/2 versus
density. To avoid clutter, only five of eight projected points are indicated by the
short-~dashed lines. This plot reveals for this case that along the illustrated tun-
nel operating curve near the flutter condition, the gradient of damping ratio with
respect to increasing density is only about half as steep for the correct aerodynam-
ics (E variable) as it is for simple harmonic aerodynamics (E = 0); thus the correct
aerodynamics predict a less abrupt approach to flutter.

Figure 3 shows curves of the speed index for constant damping ratio versus Mach
number for M ranging from 0.5 to 0.9. The values of speed index from figure 2
for p = 0.002378 slug/ft3 are included. At M = 0.5, there is very little differ-
ence between the solid-curve and the dashed-curve predictions of speed index for the
two damping ratios analyzed, which are above and below the flutter boundary. As M
increases toward 0.9, the two predictions become more different, with the present



variable—z aerodynamics predicting a lower rate of change of damping_ratio versus
speed index at a given Mach number than does the V-g analysis with ¢ = 0 and
variable gj.

Aspect~-Ratio~Five Rectangular-Planform Model

Aerodynamic-force results.- Doggett, Rainey, and Morgan (1959) tested this model
at several Mach numbers. Yates et al. (1982) reported recent flutter analyses via
two subsonic aerodynamic programs and compared the analytical and experimental
results in figures 14 to 16 therein. One of the programs used was the unmodified
FAST program of Desmarais and Bennett (1978). Three bending and two torsion modes of
a uniform cantilever beam were utilized.

With the present modified FAST program, aerodynamic forces were calculated for
three decay ratios, namely, E = 0 and +0.1, and for a range of reduced frequencies
k from 0 to 0.228. (The flutter experiments had values of Xk ranging from 0.047
to 0.102.) For one of the experimental Mach numbers, M = 0,904, two of the general-
ized forces 312 and 522 are plotted in figure 4. The kernel-function results are

indicated by "K" in the figure. Figure 4(a) shows A descriptively termed the

22’
"weighted twisting moment due to first-torsion-mode vibration.” The curve for har-
monic motion, ¢ = 0, reflects the effects induced by the past history of constant-
amplitude motion, and the moment lags in phase behind the torsional deflection. The
negative imaginary part indicates that this moment of itself acts to damp out the
first torsion component of motion. The positive real part indicates that the moment
A22 acts to increase, or diverge, the torsional displacement, and thus to decrease
the first torsional frequency as the dynamic pressure increases. The curve for

z = 0.1 reflects the effects induced by a past history of exponentially decaying

motion, while the curve for ¢ = -0.1 reflects the effects induced by a past his~
tory of growing motion. The three vectors from the origin to the points for
k = 0.114 show that the moment A22 lags the torsional displacement a little more

for decaying motion and a little less for growing motion than it does for constant-
amplitude motion. Thus to the extent that the wing torsional motion component influ-
ences the overall flutter motion, the variation of the lag of the moment 322 with

E contributes in the same sense as E; that is, decaying motion is accompanied by an
increased decay-producing moment, and growing motion by a decreased decay-producing
moment., For comparison the plus (+) symbols were computed from equation (7). The
seven coefficients of the RFA of equation (7) were computed by substituting the

522 for the five values of k with [ = 0 into equation (6). The RFA results com-

pare favorably with kernel-function results in this application.

Figure 4(b) shows the weighted lift due to first-torsion-mode motion

STy

(note that the horizontal scale begins at 24). As with the moment A this 1lift

22'
quantity displays more phase lag with decaying motion, and less phase lag and even
a phase lead with growing motion in comparison to constant-amplitude motion. As in
figure 4(a) the comparison between kernel~-function and RFA results is good.



Flutter and damping-ratio boundaries.- Next the flutter boundary and selected
damping-ratio boundaries for growing and decaying motion near the flutter boundary
were calculated for this four-percent-thick rectangular model. This was done for
four of the Mach numbers, namely, M = 0.756, 0.801, 0.856, and 0.904, listed in
table III of Doggett, Rainey, and Morgan (1959). The model properties from their
table 1(a) for the first and second bending and first torsion modes were used; how-
ever, because the modal damping coefficients g; for first and second bending modes
of the four-percent-thick wing are missing, those coefficients for the six-percent-
thick wing were used from table 1(a). Calculated mode shapes for a uniform cantile-
ver beam with midchord center of gravity and elastic axis were used. Moreover, the
next two high frequency calculated modes, namely, second torsion and third bending,
were included to ensure convergence of results with respect to the number of modes.
For each of the four Mach numbers the density at the experimental flutter point was

used.

Figure 5 shows flutter boundary (7 = 0) as the flutter speed index (V/bgug\H)
plotted against Mach number. The higher and lower boundaries are for ¢ = -0.025
and 0.025, respectively. The comparison points from the RFA of equation (7) are very
close to those from the kernel function.

Two~Dimensional Wing Section

Farly studies of the DAST high-aspect-~ratio transport wing model (see the fol-
lowing section) produced unexpected wavy and looping curves of the complex general-
ized forces as functions of reduced frequency for decaying motion. This behavior
cast doubt on the adequacy of the computational process, including the convergence
with respect to the downwash collocation order. Since collocation order can be
extended very high for two-dimensional flow, aerodynamic forces were studied for the
oscillating two-dimensional wing section to determine whether similar trends would be
calculated and to test for convergence with respect to the number of downwash collo-
cation points. Edwards (1979) presents similar examples of section 1lift due to
plunging and pressure distributions resulting from both growing and decaying airfoil

motions.

For the present report the classical Possio integral equation formulation as
described in Bland (1982) was used. The associated computer program for harmonic
motion was generalized to growing and decaying exponential motion. For most of
the two-dimensional section calculations, 64 downwash collocation points were
used. Figure 6 shows the section 1lift due to plunging and pitching oscillations
for M = 0.9 and for three motion-decay ratios, namely, (1) simple harmonic motion
(z = 0), (2) growing motion with f = -0.1, and (3) decaying motion with 7z = 0.1.
Results from both the generalized kernel-function calculation (denoted "K") and the
RFA (based on 14 values of k) are included. The range of reduced frequency is

large, from 0 to 4.0.

Figure 6(a) shows 511, the generalized lift due to plunging. (The plunge
half-amplitude is the semichord length.) The kernel-function results for ¢ = O
agree rather well with the RFA results of equation (7). The RFA results for grow-
ing motion, E = -0.,1, also agree well with the kernel-function results.

For decaying motion, = 0.1, the RFA of equation (7) is given by the smooth

dashed curve. In great contrast is the looping curve of the kernel-~function result.
Certain values of %k are labeled. As k increases beyond about 0.9, the curve

10



first develops a wavy behavior, then a near cusp, and finally widening loops. This
unexpected wavy and looping behavior appears for values of k that are well beyond
almost any wing flutter, but which might be reached for control-surface flutter.

Figures 6(b) and 6(c) show the generalized lift 512 due to pitching about the

quarter~-chord with half-amplitude of 1 radian. Figure 6(b) shows the kernel-function
result for g = 0 and -0.1 from k = 0 to 5.0 and for ¢ = 0.1 from k = 0 to 0.5.
It is apparent that the seven-term RFA function of equation (7) fitted to the

14 values of this particular A1 does not result in a good fit. This inadequate

fit is due to the reversal of 512 in the selected range of k and to the least-
square-error fit being over too great a range of k. An improvement would be needed
for RFA applications. The spread for the three values of { 1is as expected except
for the looping near k = 0.5. Figure 6(c) gives an enlarged view of the behavior of
A12 for the frequency range 0.5 < k € 4.,5. The wavy behavior for g = 0.1 begins

near k = 0.5 and becomes looping behavior for k greater than about 1.0.

As stated above, all the results shown were calculated with 64 collocation
points on the chord. Checks were also made with 32 and 128 collocation points, and
only insignificant differences were found even to k = 4.0. The conclusion is
reached therefore that the kernel-function results shown are converged with respect
to the number of collocation points, and that the looping behavior calculated for
decaying motion with Z = 0.1 is a valid mathematical result. This looping behavior
occurs for values of %k well above the range of most wing flutter, except possibly
control-surface flutter. It may be applicable to gust analysis that extends to high
values of k.

The DAST ARW-1 High-Aspect-Ratio Swept Wing

The most realistic model analyzed here is the DAST ARW-1 (from Drones for Aero-
dynamic and Structural Testing, aerocelastic research wing 1); see Murrow and Eckstrom
(1979). The planform analyzed is shown in figure 1. It is essentially the planform
shown in figure 2 of Newsom and Pototzky (1982), but no aerodynamic effects of hori-
zontal or vertical tail surfaces or of a fuselage are included. The 12 spanwise
symmetric mode shapes and frequencies employed are those calculated for the original
DAST ARW-1 wing via the NASTRAN? finite-element analysis that was reported in Newsom
and Pototzky (1982). These modes consist of 2 rigid-body (vertical translation and
pitch) and the first 10 elastic modes, not including any aileron motion. The aileron
hinge is treated as locked (no aileron rotation).

Aerodynamic-force results.- Figure 7 shows the 355 from kernel-function
results and the RFA (based on nine values of k) for the damping ratios 7 = 0, #0.1,
and +0.577 (tan(+30°)) for 0 < k € 1.0 and M = 0.8. Mode 5 (the third elastic
mode), although strongly coupled, is judged to be best described as “first torsion.”
The original ARW-1 wing described by Edwards (1979) and Newsom and Pototzky (1982)
experienced flutter during flight testing at k =~ 0.16.

2NASTRAN is a registered trademark of the National Aeronautics and Space
Administration.
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The looping behavior of the kernel-function result for ¢ = 0.577 is like the
looping of the two-dimensional case described in a preceding section and is believed
to be a valid result. The RFA result agrees with the kernel-function result except
for the highly damped motion (f = 0.577) at values of k about 0.2 and higher,
especially for k higher than 0.3,

Flutter analysis results.- The present flutter analysis employs the subsonic
kernel~function aerodynamics generalized to growing and decaying motion. Newsom
and Pototzky (1982) reported the flutter and preflutter results obtained based on
doublet-lattice aerodynamics for simple harmonic motion and extrapolation into the
complex s-plane via the RFA.

The technique of strengthening the analytical aerodynamic forces by multiplying
by the ratio of wind-tunnel static 1lift to the analytical static lift employed by
Newsom and Pototzky (1982) is used in the present analysis. The upper curve of
C versus M in figure 8 herein is from figure 17 of Byrdsong and Hallissy (1979)

o
and is for the complete model including the horizontal tail. Since the analysis here
is of the wing only, the second curve of figqure 8 was obtained from the tail-off data
(plots of Cp, vs. a) of figures 11(a) to 11(e) of Byrdsong and Hallissy (1979).
The lowest curve of figure 8 is from the kernel-function program using program-
default downwash collocation at 6 chord stations on each of 12 span stations. The
difference in percent from the bottom (analytical) curve up to the tail-off experi-
mental curve is indicated for several Mach numbers; this difference was used to
strengthen the generalized force matrix in the flutter analysis.

Flutter stability was analyzed at Mach numbers from 0.70 up to 0.82 for
15000 feet and up to 0,94 for 25000 feet. Densities and sound speeds were used from
the U.S. Standard Atmosphere, 1962. Figure 9(a) for 15000 feet and figure 9(b) for
25000 feet show the calculated damping ratio Z and associated frequency f ver-
sus Mach number. The circles are the experimental values that appear in figures 8
and 10 of Newsom and Pototzky (1982), and the flight flutter point from their fig-
ure 10 is shown by the arrow. The good correlation of the present analysis and
experiment is evident. The analytical results of Newsom and Pototzky (1982), based
on doublet-lattice aerodynamics with the strengthening of their figure 5, are given
by the dashed curves. As can be observed, these results are comparable to those of
the present analysis and to the flight experiments.

CONCLUDING REMARKS

The subsonic kernel function has been generalized to the s-plane for growing and
decaying oscillatory motion. The function was substituted into a flutter analysis
program, and that program was also adapted throughout to obtain the desired solutions
for constant-damping-ratio boundaries, including the usual zero-decay flutter bound-
ary. A rational function approximation (RFA) used in control theory for approximat-
ing s-plane aerodynamic forces was used for some comparisons.

For the cases analyzed, the RFA aerodynamics gave (or could give) very good
agreement with the s-plane subsonic-kernel-function results for the lower reduced
frequencies that characterize wing flutter. But for combinations of higher damping
ratios and of higher frequencies that often characterize control-surface flutter, the
RFA aerodynamics did not follow the looping and spiraling kernel-function results.

12



For a clipped-tip delta-wing flutter model, the s-plane kernel function pre-
dicted a less steep gradient of damping ratio versus density as the flutter boundary
was approached and exceeded than did the conventional V~g solution method that uses
simple harmonic aerodynamics.

An aspect-ratio-five rectangqular-planform model was analyzed for four Mach num-
bers (M) ranging from 0.756 to 0.904. Constant-damping-ratio boundaries, one for
decaying and one for growing motion, are presented near the flutter boundary. At
M = 0,904, study of the weighted torsional moment due to first-torsion-mode oscilla-
tion showed that in comparison to the phase lagging moment of constant-amplitude
motion, decay produced a greater lag of that moment, while growth produced a lesser
lag. Thus, in terms of this first torsion moment only, decay promotes faster decay,
and growth promotes slower decay; but for coupled-mode flutter there is no assurance
that the overall flutter motion will show this same effect. The RFA aerodynamics
gave good comparisons for both aerodynamic forces and decay-ratio results for the low
reduced frequencies studied.

An analysis of the DAST ARW-13 transport-type wing was also made. Plots of
damping ratio versus flight Mach number were calculated for two altitudes, 15000 and
25000 feet. Good comparisons of damping ratios and associated frequencies were
obtained with flight experiments and also with a doublet-lattice analysis that used
the RFA. The same type of analytical treatment was used here as was used in a refer-
enced doublet-lattice analysis; namely, in the flutter analysis the generalized
forces were strengthened by multiplying by the ratio of the lift-curve slope CL

a
obtained on a wind-tunnel model (tail off) to that from the subsonic-kernel-function
aerodynamics. For M = 0.8 and reduced frequencies ranging from 0 to 1.0 the gener-
alized "first-torsion-mode" forces calculated from the kernel function agreed with
those calculated from the rational function approximation (as in Abel, NASA TP-1367,
1979, for example) except at large damping ratios.,

At reduced frequencies higher than that of the experimental flutter, an unex-
pected doubling back and looping of some of the generalized forces for strongly
decaying motion were found in the complex plane. This behavior cast doubt on the
adequacy of the computational process for the DAST wing, including the convergence
with respect to the downwash collocation order. Therefore the two-dimensional-flow
wing section was studied because the collocation order can be extended very high
and collocation convergence can be studied. The classical Possio integral equation
formulation was used. An existing computer program for harmonic motion was general-
ized to growing and decaying motion. For moderately decaying motion a looping behav-
ior of the 1lift forces due to both translational and pitching oscillations was found
at higher reduced frequencies for collocation-converged results. Because of these
two-dimensional-flow results the similar behavior for the DAST ARW-1 in three-
dimensional flow at high reduced frequencies and high damping ratio is concluded to
be valid. In any event the reduced frequency of flutter is well below that of the
looping behavior. The RFA aerodynamics did not follow the looping behavior at higher
reduced frequencies.

In the appendix, procedures were described and evaluated for the accurate calcu-
lation of the kernel function for general s-plane motion. A 12-term exponential

3Drones for Aerodynamic and Structural Testing (DAST), aeroelastic research
wing 1 (ARW-1).
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series approximation in the kernel~function integral was shown to provide good accu-
racy for growing and decaying motion in the s-plane extending at least 45° on both
sides of the imaginary s~axis that represents harmonic motion.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

February 17, 1984
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APPENDIX

CALCULATION OF THE SUBSONIC KERNEL FUNCTION IN THE s-PLANE

This appendix serves four purposes. It describes the algorithm used in this
report to compute the kernel of the downwash integral equation. It indicates in what
part of the complex s-plane the algorithm gives acceptable results. It explains why
this particular algorithm was used. It also explains why the algorithm used, or any
similar algorithm, cannot be expected to give good results for all complex values of
reduced frequency.

The kernel function, essentially as in eguation (3) but with k replaced by
k is
cr

E(Mrkcrxoryo)
2 2
2 Y,

K(Mrkcrxoryo)

where

/ X
exp(-ikcxo) [b + ig) exp(--ikcu1 lyol)

R(M,kc,xo,yo)

(2]
u
- ik |y | J. <1 --———‘—~—> exp(-ik |y |u) d%] (a1)
c' o u1 \|1 . u2 c' o
and where Xk, is the complex reduced frequency
kc = k(1 + izg)

and

u, = (-xo + MR)/(leyol)

In equation (A1) let

s = ik = s&/V (A2)
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APPENDIX

Then
K(M,-is,xo,yo) = exp(-sxo) 1 tx exp(—su1|yol) - F(S‘Yol) (a3)

where

F(z) = 2 J‘ 1 - —-—ll——~) exp(~-zu) du (a4)
u, ( d1 + u2

and the symbol 2z = slyol is not the 2z of the main text. Integral equation (a4)
defines the function F(z) only for ]arg z] < m/2. For the multileaved Riemann
surface, 'arg z| > /2, F(z) 1is defined by analytic continuation as follows:

F(z) = F1(z) - F2(Z)

where

F1(z)

©
z f (1 - —-—1}-——> exp(-zu) du
2
0 1T +u

u
1
F (z) =z J‘ 1 - = exp(-zu) du
2 0 ( \t + u2)

By integrating by parts and applying equations 12.1.8, 12.1.9, and 9.1.5 of
Abramowitz and Stegqun (1964), one obtains

ﬂ T
F1(z) =1+ z = E-z H1(z) +-§ z Y1(z) (AS)

where H¢(z) 1is a Struve function and Y,(z) is a Bessel function of the second
kind. To show the analytic behavior of F,(z), expand exp(-zu) into a power series
and integrate termwise to obtain

i (-1 )mgm m+1
Fz(z) = Y z (n6)
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where

g = J. 1 1 ———Ji——j)um du
" Y V1 + w2

Since lgml is bounded by |u1|m+1/%m + 1), the series (egq. (A6)) has an infinite
radius of convergence, and hence F,(z) is an entire analytic function. 1In equa-
tion (A5), the Struve function =z Hy(z) is also an entire analytic function. The
Bessel function =z Y4(2z) can be expressed

2 z
z Y1(z) = ;—z J1(z) 1n 5—+ G(z)

where =z Jq(z) and G(z) are both entire analytic functions of z. Thus equa-
tions (A5) and (A6) furnish an analytic continuation of PF(z) into the multileaved
Riemann surface |arg z| > w/2.

There are no singularities in F(z) in the finite part of the complex plane
except for a logarithmic branch point at 2 = 0. The natural branch cut of F(z)
is the natural branch cut of 1n z/2, namely, the negative real z-axis.

The integral of equation (A4) is evaluated numerically by replacing the alge-
braic part of the integrand by an exponential approximation and integrating termwise:

12
u L
-——————— - < A7
1 “_-_TZ a, exp(-2"bu) (0 € u ¢ ») (a7)
1T + u
=1
An approximation of this sort is used for several reasons: (1) it is a function of

a single variable; (2) only one exponential is needed per kernel function, contribut-
ing to economy of calculation; (3) a modest number of terms provide nearly single-
precision computer-word accuracy for harmonic motion; and (4) as described below,
good accuracy extends to rather large damping ratios. The coefficients in equa-

tion (A7), namely,

b = 0.009054814793

a, = 0.000319759140 a, = -0.000055461471
ay = 0.002726074362 a, = 0.005749551566
ag = 0.031455895072 ag = 0.106031126212
a; = 0.406838011567 ag = 0.798112357155
ag = ~-0.417749229098 A = 0.077480713894
a4 = -0.012677284771 a1, = 0.001787032960
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are for the approximation (eq. (A7)) designated D12.1 by Desmarais (1982). Then, if
U1>0,

~

= - - A
#(3ly, 1) = 5ly,| exp(5u,ly 1) §~ 22— (28)
2 b + s|y '
=1 o
where
e1 = exp(-bu1)
= ( )2 (2 =2 to 12)
el = el_1 = o

The closed-form integrals that were used to derive equation (A8) all converge only if
Re(§|yo|) > -b. For lower values of Re(§|yo|], equation (A8) is deduced by analytic

continuation.

Since approximation D12.1 is valid only for u > 0, another approximation to
F(s'yoi) is used for u; < O:

12 12 =
a a, e
F(sly |) = -2 - 2(5y )2 L vexp(-su |y |) [2+) —2E
° ° (2')? - (5y )2 te 2% - 5]
2=1 yo £=1 yo

(A9)

where

[}
"

= exp(bu1)

) (L =2 to 12)

[
"
o

Approximation (A8) has poles at
- L
s|y0| =-2Db (2 =1 to 12)
that is, on the negative real s-axis, and approximation (A9) has poles at

+2°'b (2 =1 to 12)

sly_|
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that is, on the negative and positive real s-axes. The function F(E]yol) has no
singularities except a branch point at Elyol = 0., Thus one would expect approx-
imation (A8) to become unusable as arg S approaches 7T, and approximation (A9)

to behave similarly as arg s approaches either #m or O. This is shown in fig-
ure 10(a). These are plots of the real and imaginary parts of K versus Ikcyo|
for Ikcyol =0 to 8 and uqy = 0. The exact K (solid line) is compared with the
approximation (dashed line). The value of u4y 1is zero so that the exact K is
easily computed from equation (A5). For © = m/8, the exact and approximate curves
are almost indistinguishable. For 0 = w/4, the error is noticeable but approxima-
tion (A7) gives acceptable engineering accuracy. Figure 10(b) shows the same infor-
mation for an earlier and commonly used exponential approximation similar to D12.1
presented in Laschka (1970) and designated L11 in Desmarais (1982). Approxima-

tion L1t is about as bad at © = w/8 as approximation D12.1 is at 0 = mw/4. At

& = m/4, approximation L11 is unacceptable. The lower plot of figure 10(b) also
appears as part of figure 1 of Ashley and Boyd (1980) along with a still earlier
approximation from Watkins, Woolston, and Cunningham (1959) designated W4 in
Desmarais (1982). 1In Ashley and Boyd (1980), the poor performance of L1t and W4 for
0 =7/4 1is attributed to the proximity of the poles of the computed kernel. How-
ever, approximation D12.1, which has poles along the same line as L11, performs very
well at O = /4. This is so because the error induced near a pole is proportional
to the magnitude of the residue at that pole, and each residue is proportional to
the associated coefficient ay. For approximation L11, maxlazl = 644.8, whereas for
approximation D12.1, maxlazl = 0.798.

To sum up, if IGI < m/4, then equations (A8) and (A9), which use approximation
D12.1, give acceptable accuracy. All calculations in this report used values of k.
for which |6| was much less than m/4 and were performed using approximation D12.1
except for a few check calculations that were performed using approximation D24.2 of
Desmarais (1982); and no significant differences were found. Approximation D24.2 is
more accurate than D12.1 and takes about twice as long to execute.

It is the authors' opinion that exponential approximations, such as D12.1, for
which maxlak] < 1, provide a satisfactory way of computing K(M,kc,xo,yo) (where
kc = -is), to the accuracy needed for aerodynamic-force calculations, in the half
of the complex s-plane for which either |-6| < /4 or ISI < w/4; that is, for
T/4 < arg § < 31/4 and -31/4 < arg s < -1/4. For the remainder of the complex
s-plane, Iarg §| < t/4 or Iarg §| > 3m1/4, estimates of K Dbased on exponential

approximations to 1 - (u/41 + u2) become inaccurate or uneconomical, or both.
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Figure 2.~ Speed index versus density for clipped-tip delta-wing model.
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Figure 4.~ Generalized aerodynamic forces for growing and decaying motions of the
four-percent-thick rectangular-planform flutter model of Doggett, Rainey, and
Morgan (NASA T™™ X-79, 1959). O < k < 0.228; M = 0,904,
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decaying motions of a two-dimensional airfoil section.
M = 0.9,



16

12(—
E= 0 F=-0.1
E:—' 0.1 Tk=5.0
10— k=5.0+ K o
RFA__;: ————— +
L 4.0
8l 4.0 +
30 klO
6__
. 2.0 2.0
Hn(A12)
2L___
0
Yy ) -
.—.4L—
-6 1 |
0 2
(b) §12, lift due to pitching at quarter-chord. 0 < k < 4. (See detail on

fig.

6(c).)

Figure 6.- Continued.

29



30

P 3.0

Im(A,,)

2.0

) | pALL

2.7

(c) A12 for

for C = 0.1,

Figure 6.- Concluded.

4 5 6

0.5 € k £ 4.5 with additional kernel-~function results



7.2

Re(ﬂss)
61.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8
I | | Y NN
7 k=0
— 4 — K e
————— -+
RFA+
~-. 81—
—1.2L—
291 4
-1.6 — .
A 4224
-_— 0) /I
|m(A55) -2.0p— ///' J/
/.t; l,
¢l I,I
-2.4F— 628+ 1
-2.8— /
32— Tio° °
oo I
A g T,
k=1.04
~3.6L—
-4.01__
555 for growing and decaying motions of the
Mode 5 is "first torsion."

Figure 7.~ Generalized force
0 < k < 1.0,

DAST ARW-1 wing. M = 0.,8;



32

« 10— Experiment:

40—

A2—

Tail on

.08

Toil off

Present analysis

06 L | |
. . 7 . .
M

Figure 8.- Variation of lift-curve slope with Mach number. The two experimental
curves are from Byrdsong and Hallissy (NASA TP-1360, 1979).



O Experimental

Kernel function, present analysis

—————— Doublet-lattice with RFA,
Newsom & Pototzky(1982)

20—

————

Freq. 10—

d'\-l

04—

.08 | | | | ]

.70 .75 .80 .85 .90
M

(a) Altitude = 15000 feet.

Fiqure 9.~ Flutter-mode damping ratio and frequency versus Mach number
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